GCSE (9-1)

Mathematics

J560/06: Paper 6 (Higher tier)
General Certificate of Secondary Education

Mark Scheme for June 2019

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

Annotations used in the detailed Mark Scheme.

Annotation	
\checkmark	Correct
x	Incorrect
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working (after correct answer obtained), provided method has been completed
M0	Method mark awarded 0
M1	Method mark awarded 1
M2	Method mark awarded 2
A1	Accuracy mark awarded 1
B1	Independent mark awarded 1
B2	Independent mark awarded 2
MR	Misread
SC	Special case
\wedge	Omission sign

These should be used whenever appropriate during your marking.
The M, A, B, etc annotations must be used on your scripts for responses that are not awarded either 0 or full marks.
It is vital that you annotate these scripts to show how the marks have been awarded.

Subject-Specific Marking Instructions

1. \mathbf{M} marks are for using a correct method and are not lost for purely numerical errors.

A marks are for an accurate answer and depend on preceding M (method) marks. Therefore M0 A1 cannot be awarded.
\mathbf{B} marks are independent of \mathbf{M} (method) marks and are for a correct final answer, a partially correct answer, or a correct intermediate stage.
SC marks are for special cases that are worthy of some credit.
2. Unless the answer and marks columns of the mark scheme specify \mathbf{M} and \mathbf{A} marks etc, or the mark scheme is 'banded', then if the correct answer is clearly given and is not from wrong working full marks should be awarded.

Do not award the marks if the answer was obtained from an incorrect method, ie incorrect working is seen and the correct answer clearly follows from it.
3. Where follow through (FT) is indicated in the mark scheme, marks can be awarded where the candidate's work follows correctly from a previous answer whether or not it was correct.

Figures or expressions that are being followed through are sometimes encompassed by single quotation marks after the word their for clarity, eg FT $180 \times$ (their ' 37 ' +16), or FT $300-\sqrt{ }\left(\right.$ their ${ }^{\prime} 5^{2}+7^{2}$). Answers to part questions which are being followed through are indicated by eg FT $3 \times$ their (a).

For questions with FT available you must ensure that you refer back to the relevant previous answer. You may find it easier to mark these questions candidate by candidate rather than question by question.
4. Where dependent (dep) marks are indicated in the mark scheme, you must check that the candidate has met all the criteria specified for the mark to be awarded.
5. The following abbreviations are commonly found in GCSE Mathematics mark schemes.

- cao means correct answer only.
- figs 237, for example, means any answer with only these digits. You should ignore leading or trailing zeros and any decimal point eg
$237000,2.37,2.370,0.00237$ would be acceptable but 23070 or 2374 would not.
- isw means ignore subsequent working (after correct answer obtained).
- nfww means not from wrong working.
- oe means or equivalent.
- rot means rounded or truncated.
- seen means that you should award the mark if that number/expression is seen anywhere in the answer space, including the answer line, even if it is not in the method leading to the final answer.
- soi means seen or implied.

6. Make no deductions for wrong work after an acceptable answer unless the mark scheme says otherwise, indicated for example by the instruction 'mark final answer'.
7. As a general principle, if two or more methods are offered, mark only the method that leads to the answer on the answer line. If two (or more) answers are offered, mark the poorer (poorest).
8. When the data of a question is consistently misread in such a way as not to alter the nature or difficulty of the question, please follow the candidate's work and allow follow through for \mathbf{A} and \mathbf{B} marks. Deduct 1 mark from any \mathbf{A} or \mathbf{B} marks earned and record this by using the MR annotation. \mathbf{M} marks are not deducted for misreads.
9. Unless the question asks for an answer to a specific degree of accuracy, always mark at the greatest number of significant figures even if this is rounded or truncated on the answer line. For example, an answer in the mark scheme is 15.75 , which is seen in the working. The candidate then rounds or truncates this to $15.8,15$ or 16 on the answer line. Allow full marks for the 15.75.
10. If the correct answer is seen in the body and the answer given in the answer space is a clear transcription error allow full marks unless the mark scheme says 'mark final answer' or 'cao'. Place the annotation \checkmark next to the correct answer.

If the answer space is blank but the correct answer is seen in the body allow full marks. Place the annotation \checkmark next to the correct answer.
If the correct answer is seen in the working but a completely different answer is seen in the answer space, then accuracy marks for the answer are lost. Method marks would still be awarded. Use the M0, M1, M2 annotations as appropriate and place the annotation \times next to the wrong answer.
11. Ranges of answers given in the mark scheme are always inclusive.
12. For methods not provided for in the mark scheme give as far as possible equivalent marks for equivalent work. If in doubt, consult your Team Leader.
13. Anything in the mark scheme which is in square brackets [...] is not required for the mark to be earned, but if present it must be correct.

MARK SCHEME

Question	Answer	Marks	Part marks and guidance		
$\mathbf{1}$	a	5400 or 5401 or 5402 final answer	$\mathbf{2}$	M1 for figs $35 \div$ figs 648, soi by figs 540[1...] or for 0.0000648 seen	
	b	Any reference to average/inexact weight oe [in packet weight or weight of a grain] or recognising that the number of grains of salt must be integer oe	$\mathbf{1}$		Condone any mention of average for variation and/or size for weight Mark the best part if no
contradiction or wrong statement					
See appendix					

J560/06					Mark Scheme	June 2019
Question			Answer	Marks	Part marks and guidance	
3	a		Correct answer based on angle or area/arc length	1	The angle [for black] - is too small oe or - is less than a fifth oe or - should be 72 oe The area/arc length [for black] - is too small oe or - is less than a fifth oe	Accept 26 to 30 for "the angle" Accept "not equal to" for "too small" or "less than" See appendix
	b	b	Any comment recognising limitations in range of the vertical scale	1		EG It does not start at zero or It starts at 113 See appendix
4			[expected profit is $£$] 80 with 200 and 120 seen	4	B1 for [£] 200 or 20 000[p] AND M2 for $0.1 \times 400 \times 3$ soi 120 or M1 for 0.1×400 soi 40 Alternative method B1 for [£] 200 or $20000[p]$ M1 for $\frac{\text { their200-100 }}{3}$ [prizes] soi $33[.3 \ldots]$ M1 for 0.1×400 soi 40 A1 for she is giving away too many prizes oe Alternative method B1 for [£] 200 or $20000[p]$ M1 for $\frac{\text { their200-100 }}{3}$ [prizes] soi 33[.3...] M1 for $\frac{\text { their } 33[.3 \ldots]}{400}$ soi $0.08[3 \ldots]$ A1 for the probability of winning the game is too great oe	Apply scheme to consistent working in pence rather than $£$.

Answer

Correct solution is $x \leq-3$ from algebraic working

No and number line shows $x \geq-3$ oe or
No and draws the correct inequality on number line
or
No and "the arrow points the wrong way" oe

Marks
M3
M2 for $8 x-3 x \leq-10-5$ or better,
or for $5+10 \leq 3 x-8 x$ or better
or
M1 for $8 x-3 x$, or $3 x-8 x$, or $[\pm] 5 x$, or $-10-5$, or $5+10$, or $[\pm] 15$ seen

A1dep

A1 dep on M3

After 0 scored, allow SC1 for
number line shows $x \geq-3$
or
"the arrow points the wrong way" oe but only if no incorrect working shown
or
correct substitution of a value $\neq-3$ and conclusion that inequality is false oe

For M2 and M1 condone incorrect inequality sign or "equals".

Alternative method 3 trials for values of x where $x<-3, x=-3$ and $x>-3$ and correct conclusion can score full marks.
Without the correct conclusion, maximum for this approach is SC1 for only the 3 correct trials (as described above)

\boldsymbol{x}	$\mathbf{8 x}+\mathbf{5}$		$\mathbf{3 x} \mathbf{- 1 0}$
-6	-43	$<$	-28
-5	-35	$<$	-25
-4	-27	$<$	-22
-3	-19	$=$	-19
-2	-11	$>$	-16
-1	-3	$>$	-13
0	5	$>$	-10
1	13	$>$	-7
2	21	$>$	-4
3	29	$>$	-1
4	37	$>$	2

Question		Answer	Marks	Part marks and guidance	
15		$(5 x+2)(x+1)$ oe using two pairs of brackets -0.4 oe and -1	2 1	M1 for any two factors that give two correct terms when expanded or partial factorisation such as $5 x(x+1)+2(x+1)$ or $x(5 x+2)+[1](5 x+2)$ Correct or FT their two factors	Condone missing final bracket for up to full marks Up to full marks can be awarded for solving using non-integer factorisations such as $5(x+0.4)(x+1)$ oe NB Working backwards from the answers scores only the final mark eg. $(x+0.4)(x+1)=0$ without seeing a factor of 5 or division by 5 leading to -0.4 and -1 Any other method, award B1 for both answers correct
16		Correct sketch of $y=-\sin x$	3	There must be at least one cycle to gain any marks. B1 for a positive or negative sine curve shape starting at $(0,0)$ and B1 for maximums at ($\ldots, 1$) and minimum at ($\ldots,-1$) and B1 for maximum only at $(270, \ldots)$ and minimum only at $(90, \ldots)$	eg B1B1B0 for $y=\sin x$ drawn B0B1B0 for $y= \pm \cos x$ drawn B1B1B0 for $y=\sin 2 x$ drawn Before using overlay, check blue line is the x-axis All maximums and minimums within red on overlay Maximum and minimum within green on overlay

J560/06				Mark Scheme	June 2019
Question		Answer	Marks	Part marks and guidance	
18		8.74[...] nfww	4	M3 for $[\mathrm{r}=] \sqrt[3]{\frac{2100}{\pi}}$ or M2 for $\pi r^{3}=2100$ oe M1 for $\frac{1}{3} \pi r^{2}(3 r)$ oe Alternative method using h M3 for [$h=] \sqrt[3]{\frac{56700}{\pi}}$ soi by 26.2[3...] or M2 for $\pi h^{3}=56700$ oe M1 for $\frac{1}{3} \pi\left(\frac{h}{3}\right)^{2} h$ oe	Accept answer of 8.7 after M3 May be done in stages eg M3 for $\sqrt[3]{668 .(\ldots)}$ eg. M2 for $3 \pi r^{3}=6300$ or $\frac{1}{3} \pi r^{2}(3 r)=2100$ etc eg. M1 for πr^{3} eg. $\mathbf{M} 1$ for $\frac{1}{27} \pi h^{3}$
19	a	$x^{2}+y^{2}=29$ ое	4	B2 for 29 or $\sqrt{29}$ or $5.38(5 \ldots)$ to 5.39 or M1 for $2^{2}+5^{2}$ or $\sqrt{2^{2}+5^{2}}$ or $2^{2}+(-5)^{2}$ or $\sqrt{2^{2}+(-5)^{2}}$ AND B1 for $x^{2}+y^{2}=k$ where k is a number >0 or $x^{2}+y^{2}=r^{2}$	Condone poor use of or missing brackets for M1 eg $-5^{2}+2^{2}$ or $2^{2}+-5^{2}$ earns M1, but $2^{2}-5^{2}$ does NOT earn M1 Condone other letters instead of r, except x and y.
	b	2.5 or $\frac{5}{2}$ oe	2	M1 for $-\frac{2}{5}$ oe or -0.4 seen or use of $m_{1} m_{2}=-1$ with their radius gradient	M1 for $[y=] \frac{5}{2} x[+c]$ oe Condone $-\frac{2}{5} x$ seen for M1

Question			Answer	Marks	Part marks and guidance	
20	a		$\begin{aligned} & 1^{4}-1^{2}-9=-9 \\ & 2^{4}-2^{2}-9=3 \end{aligned}$ Sign change, solution between $x=1$ and $x=2$	3	M2 for $1^{4}-1^{2}-9=-9$ and $2^{4}-2^{2}-9=3$ or M1 for $1^{4}-1^{2}-9$ or $2^{4}-2^{2}-9$ soi by -9 or 3 Alternative method After $x^{4}-x^{2}=9$ seen M2 for $2^{4}-2^{2}=12$ and $1^{4}-1^{2}=0$ A1 for $12>9$ and $0<9$ so solution between $x=1$ and $x=2$ OR M1 for $2^{4}-2^{2}$ or $1^{4}-1^{2}$ soi by 12 or 0 Alternative method SC3 for using an iterative equation that converges to a value in the range 1.85 to 1.95 and concluding statement that $1<1.85$ to $1.95<2$ oe or SC2 for using an iterative equation that converges to a value in the range 1.85 to 1.95 Alternative method SC3 for using quadratic formula (see (b)) leading to a value in the range 1.88 to 1.89 and concluding statement that $1<1.88$ to $1.89<2$ oe or SC2 for using quadratic formula (see (b)) leading to a value in the range 1.88 to 1.89	Accept other values of x used between 1 and 2 (see table in part (b)). For full marks, the two values need to produce a sign change. Examples just sufficient for third mark include: sign change $-9<0<3$ $x=1$ gives an answer <0 and $x=2$ gives an >0 Examples insufficient for third mark: so x lies between 1 and 2 If candidates refer to their working in part (b) within part (a), award marks for any of the final 2 alternative methods.

Answer

Two correct evaluations in the range 1.85 to 1.95 , one which gives a positive value and the other giving a negative value
1.9

M2 for two correct evaluations between 1 and 2, one which gives a positive value and the other giving a negative value
or
and
M1 for one correct evaluation between 1 and 2
A1dep
Dependent on achieving at least M2
OR
SC1 for 1.9 with no worthwhile working
Alternative method by iteration
M1 rearranges to a correct iterative formula
(converging or diverging)
M1 attempts first iteration (either substitution of $1 \leq x \leq 2$
seen or found to at least 2dp rot)
M1 continues further iteration(s) to reach x in the range 1.85 to 1.95
A1 for 1.9
Alternative method by quadratic formula
M2 for $\left[x^{2}=\right] \frac{-(-1) \pm \sqrt{(-1)^{2}-4(1)(-9)}}{2(1)}$ soi by $3.54[1 .$.
or M1 for this formula with at most two errors
AND
M1 for $x=\sqrt{\text { their } 3.54[1 . .]}$ soi by 1.88 to 1.89
A1 for 1.9

Likely values: accept rot to 1 or
more dp

\boldsymbol{x}	$\boldsymbol{x}^{\mathbf{4}}-\boldsymbol{x}^{\mathbf{2}}-\mathbf{9}$
1.1	-8.7459
1.2	-8.3664
1.25	$-8.12109 \ldots$
1.3	-7.8339
1.4	-7.1184
1.5^{*}	-6.1875
1.6	-5.0064
1.7	-3.5379
1.75^{*}	$-2.68359 \ldots$
1.8	-1.7424
1.85	$-0.70899 \ldots$
1.875^{*}	$-0.1560 \ldots$
1.9	0.4221
1.9375^{\star}	$1.3379 \ldots$
1.95	1.656506
2	3

Alternative iteration method notes condone missing subscripts
eg M1 for $x=\sqrt{\sqrt{9+x^{2}}}$
and M1 for $\sqrt{\sqrt{9+1^{2}}}$ or 1.77[8..]
or 1.78

If candidates refer to or use their working in part (a) within part (b), award up to full marks for part (b).

J560/06
Question
21 Answer

J560/06				Mark Scheme	June 2019
Question		Answer	Marks	Part marks and guidance	
22	a	17150	1		
	b	$16807 \div 17150=0.98$	1	Condone: $\begin{aligned} & 17150 \times[0] .98=16807 \\ & 16807 \div[0] \cdot 98=17150 \end{aligned}$	
	c	15818 to 15819	2	M1 for 17150×0.98^{4} or their $(\mathrm{a}) \times 0.98^{4}$ or for 16807×0.98^{3} and A1FT from their (a) $\times 0.98^{4}$ correctly evaluated Alternative methods using division M1 for $16000 \div 0.98^{4}$ A1 for 17300 to 17350 is greater than 17150 OR M1 for $16000 \div 0.98^{3}$ A1 for 16900 to 17000 is greater than 16807	FT from their (a), and only if method shown Accept "[population in] 2018" for 17150 Accept "[population in] 2019" for 16807
	d	17500 nfww	2	M1 for 17150×0.98^{-1} oe or their (a) $\times 0.98^{-1}$ oe or 16807×0.98^{-2} oe	NB: M1 for $0.98^{-1}=1.02[04 \ldots]$ and $17150 \times 1.02[04 \ldots]$ but MO for $17150 \times 1.02=17493$

Question 1b

A	Because it is a decimal and you can't have a decimal of a grain of salt.	1 Reference to requiring integer value
B	They might have rounded the 0.35kg up.	1 Equivalent to "figures not exact"
C	Some grains can be lighter or heavier than this.	1 "this" is "the average"?
D	The weight of each grain is an average.	1 True; mention of average
E	The weight given is an average weight.	1 True; mention of average
F	As it is an average amount of salt.	1 True; mention of average. Read amount for weight
G	Some grains of salt may be heavier.	1 Implies variation
H	It's an average	1 Minimum case
I	It's not exact	1 Minimum case
J	It's a decimal	$\mathbf{1}$ Minimum case
K	Because it is hard to exactly measure that finite amount consistently.	$\mathbf{0}$ It may be "hard to measure" but doesn't say they are not exact.
L	It's an estimate because in some packets there will be slightly more or less grains as they are too small to count.	$\mathbf{0}$ Refers to the number of grains and does not reference the weight of a grain.
M	There could be a fraction of a grain of salt.	$\mathbf{0}$ Implies number of grains can be non-integer.
N	They all weigh the same but could be different sizes	$\mathbf{0}$ Choice One incorrect statement and one correct

Question 3a

A	The black section does not cover $1 / 5$ of the spinner	$\mathbf{1}$ "covering" implies area
B	The angle is 28°. It should be 72°.	$\mathbf{1}$
C	$1 / 5$ is 72° and the black section is less than this	$\mathbf{1}$
D	The angle is only 28.	$\mathbf{1}$ Implied comparison with correct angle BOD Minimum case
E	Because $30 / 360$ is $1 / 12$	$\mathbf{1}$ comparing angle as fraction with common numerator with $1 / 5$ (which is given) (3/36 is not enough to compare)
F	Because 28/360 =0.07[..] not 0.2	$\mathbf{1}$ Correct comparison (but (26 to 30$) / 360$ needed for evidence of working with angle)
G	The angle is 28°.	$\mathbf{0}$ Does not say that it should be 72 or is too small
H	The sections are not of equal area	$\mathbf{0}$
I	The sections are not of equal width	$\mathbf{0}$
J	The black section is the smallest section	$\mathbf{0}$
K	The spinner is unequal and some spaces are the same colour but different size	$\mathbf{0}$
L	It's more like a tenth	$\mathbf{0}$ No angle used to justify

Question 3b

A	The graph starts at 113	1 Recognises limitation in scale
B	The y-axis is only from 113 to 121	1 Recognises limitation in scale
C	Because you don't see anything below 113	1 Recognises limitation in scale
D	You can't read between the numbers on the scale	$\mathbf{0}$ Does not recognise limitations in the range of the scale
E	It doesn't start from the bottom of the graph and the units go up in an unusual pattern.	$\mathbf{0}$ Too vague.
F	It looks as though there has been a drastic increase in price when there hasn't.	$\mathbf{0}$ Not explained why the scale causes this
G	There are lines joining the points.	$\mathbf{0}$ Irrelevant
H	Because the cost varies throughout the month.	$\mathbf{0}$ True but describing patterns
I	Because it would have fluctuated.	$\mathbf{0}$ True but describing patterns
J	You don't see the bottom of the graph	$\mathbf{0}$ Too vague

OCR (Oxford Cambridge and RSA Examinations)
 The Triangle Building
 Shaftesbury Road
 Cambridge
 CB2 8EA
 OCR Customer Contact Centre

Education and Learning

Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

